告别「一条路走到黑」:通过自我纠错,打造更聪明的Search Agent
为了同时解决知识的实时性和推理的复杂性这两大挑战,搜索智能体(Search Agent)应运而生。它与 RAG 的核心区别在于,Search Agent 能够通过与实时搜索引擎进行多轮交互来分解并执行复杂任务。这种能力在人物画像构建,偏好搜索等任务中至关重要,
智能体 推理 聪明 agent searchagent 2025-11-18 16:16 4
为了同时解决知识的实时性和推理的复杂性这两大挑战,搜索智能体(Search Agent)应运而生。它与 RAG 的核心区别在于,Search Agent 能够通过与实时搜索引擎进行多轮交互来分解并执行复杂任务。这种能力在人物画像构建,偏好搜索等任务中至关重要,
智能体 推理 聪明 agent searchagent 2025-11-18 16:16 4
在现实世界的应用中,MLLM 需要访问外部知识源,并对动态变化的现实世界信息进行实时响应,从而解决信息检索和知识密集型的用户查询。当前的一些方法,比如检索增强生成(RAG)、search agent 以及配备搜索功能的多模态大模型,往往存在流程僵化、搜索调用过
搜索 模态 rag agent searchagent 2025-10-17 10:46 8